Part Number Hot Search : 
20000 16C55 A1020 P4KE16A ST72F C829B 87631 C1246
Product Description
Full Text Search
 

To Download FDP887008 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FDP8870
e
May 2008
FDP8870
N-Channel PowerTrench(R) MOSFET 30V, 156A, 4.1m
General Description
This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low rDS(ON) and fast switching speed.
tmM
Features
* rDS(ON) = 4.1m VGS = 10V, ID = 35A , , * rDS(ON) = 4.6m VGS = 4.5V, ID = 35A * High performance trench technology for extremely low rDS(ON) * Low gate charge
Applications
* DC/DC converters
* High power and current handling capability
*
RoHS Compliant
(FLANGE) DRAIN
D
SOURCE DRAIN GATE
G S
TO-220AB
FDP SERIES
MOSFET Maximum Ratings TC = 25C unless otherwise noted
Symbol VDSS VGS Parameter Drain to Source Voltage Gate to Source Voltage Drain Current Continuous (TC = 25oC, VGS = 10V) (Note 1) ID Continuous (TC = 25oC, VGS = 4.5V) (Note 1) Continuous (Tamb = 25oC, VGS = 10V, with RJA = 62oC/W) Pulsed EAS PD TJ, TSTG Single Pulse Avalanche Energy (Note 2) Power dissipation Derate above 25oC Operating and Storage Temperature 156 147 19 Figure 4 300 160 1.07 -55 to 175 A A A A mJ W W/oC
oC
Ratings 30 20
Units V V
Thermal Characteristics
RJC RJA Thermal Resistance Junction to Case TO-220 Thermal Resistance Junction to Ambient TO-220 ( Note 3) 0.94 62
o o
C/W C/W
Package Marking and Ordering Information
Device Marking FDP8870 Device FDP8870 Package TO-220AB Reel Size Tube Tape Width N/A Quantity 50 units
(c)2008 Fairchild Semiconductor Corporation
FDP8870 Rev. A3
FDP8870
Electrical Characteristics TC = 25C unless otherwise noted
Symbol Parameter Test Conditions Min Typ Max Units
Off Characteristics
BVDSS IDSS IGSS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current ID = 250A, VGS = 0V VDS = 24V VGS = 0V VGS = 20V TC = 150oC 30 1 250 100 V A nA
On Characteristics
VGS(TH) Gate to Source Threshold Voltage VGS = VDS, ID = 250A ID = 35A, VGS = 10V rDS(ON) Drain to Source On Resistance ID = 35A, VGS = 4.5V ID = 35A, VGS = 10V, TJ = 175oC 1.2 2.5 V 0.0034 0.0041 0.0040 0.0046 0.0051 0.0065
Dynamic Characteristics
CISS COSS CRSS RG Qg(TOT) Qg(5) Qg(TH) Qgs Qgs2 Qgd Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Total Gate Charge at 10V Total Gate Charge at 5V Threshold Gate Charge Gate to Source Gate Charge Gate Charge Threshold to Plateau Gate to Drain "Miller" Charge (VGS = 10V) VDD = 15V, ID = 35A VGS = 4.5V, RGS = 3.3 11 105 70 46 168 173 ns ns ns ns ns ns VDS = 15V, VGS = 0V, f = 1MHz VGS = 0.5V, f = 1MHz VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 15V ID = 35A Ig = 1.0mA 5200 970 570 2.1 106 56 5.0 15 10 23 132 69 6.5 pF pF pF nC nC nC nC nC nC
Switching Characteristics
tON td(ON) tr td(OFF) tf tOFF Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time
Drain-Source Diode Characteristics
VSD trr QRR Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ISD = 35A ISD = 15A ISD = 35A, dISD/dt = 100A/s ISD = 35A, dISD/dt = 100A/s 1.25 1.0 37 21 V V ns nC
Notes: 1: Package current limitation is 80A. 2: Starting TJ = 25C, L = 0.15mH, IAS = 64A, VDD = 27V, VGS = 10V. 3: Pulse width = 100s. 4
(c)2008 Fairchild Semiconductor Corporation
FDP8870 Rev. A3
FDP8870
Typical Characteristics TC = 25C unless otherwise noted
1.2 175 150 ID, DRAIN CURRENT (A) 125 100 75 50 25 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) 0 25 50 75 100 125 (oC) 150 175
POWER DISSIPATION MULTIPLIER
1.0
CURRENT LIMITED BY PACKAGE
0.8
0.6
0.4
0.2
TC, CASE TEMPERATURE
Figure 1. Normalized Power Dissipation vs Case Temperature
2 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01
Figure 2. Maximum Continuous Drain Current vs Case Temperature
ZJC, NORMALIZED THERMAL IMPEDANCE
PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 100 101
SINGLE PULSE 0.01 10-5 10-4
Figure 3. Normalized Maximum Transient Thermal Impedance
1000 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION IDM, PEAK CURRENT (A)
TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS:
VGS = 4.5V
I = I25
175 - TC 150
100
50 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101
Figure 4. Peak Current Capability
(c)2008 Fairchild Semiconductor Corporation
FDP8870 Rev. A3
FDP8870
Typical Characteristics TC = 25C unless otherwise noted
1000 10s IAS, AVALANCHE CURRENT (A) 500 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
ID, DRAIN CURRENT (A)
100 100s 10
100
STARTING TJ = 25oC
OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON)
1ms 10ms
10 STARTING TJ = 150oC
1 SINGLE PULSE TJ = MAX RATED TC = 25oC 0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
DC
60
1 0.01
0.1 1 10 tAV, TIME IN AVALANCHE (ms)
100
Figure 5. Forward Bias Safe Operating Area
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching Capability
160
160 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V ID, DRAIN CURRENT (A) ID , DRAIN CURRENT (A) 120 TJ = 175oC 80 TJ = 25oC 40 TJ = -55oC 0 1.5
VGS = 5V VGS = 4V 120 VGS = 10V 80 VGS = 3V
40
TC = 25oC PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 0 0.25 0.5 0.75 1.0
0 2.0 2.5 3.0 VGS , GATE TO SOURCE VOLTAGE (V) 3.5 VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Transfer Characteristics
10 NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID = 35A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (m) 8 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX
Figure 8. Saturation Characteristics
1.6 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 1.4
1.2
6
1.0
4 ID = 1A
0.8 VGS = 10V, ID = 35A
2 2 4 6 8 10 VGS, GATE TO SOURCE VOLTAGE (V)
0.6 -80
-40
0 40 80 120 TJ, JUNCTION TEMPERATURE (oC)
160
200
Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current
Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature
(c)2008 Fairchild Semiconductor Corporation
FDP8870 Rev. A3
FDP8870
Typical Characteristics TC = 25C unless otherwise noted
1.4 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250A 1.2 NORMALIZED GATE THRESHOLD VOLTAGE 1.2 ID = 250A
1.1
1.0
0.8
1.0
0.6
0.4 -80
-40
0
40
80
120
160
200
0.9 -80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
TJ , JUNCTION TEMPERATURE (oC)
Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature
10000
Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature
10 VGS , GATE TO SOURCE VOLTAGE (V)
CISS = CGS + CGD
VDD = 15V 8
C, CAPACITANCE (pF)
6
CRSS = CGD
COSS CDS + CGD
4 WAVEFORMS IN DESCENDING ORDER: ID = 35A ID = 5A 0 20 40 60 Qg, GATE CHARGE (nC) 80 100
1000
2
VGS = 0V, f = 1MHz 400 0.1 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 30
0
Figure 13. Capacitance vs Drain to Source Voltage
Figure 14. Gate Charge Waveforms for Constant Gate Current
(c)2008 Fairchild Semiconductor Corporation
FDP8870 Rev. A3
FDP8870
Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP 0V RG IAS VDD VDD tP VDS
+
IAS 0.01 0 tAV
Figure 15. Unclamped Energy Test Circuit
Figure 16. Unclamped Energy Waveforms
VDS VDD L VGS VDS Qg(5) VDD DUT Ig(REF) VGS = 1V 0 Qg(TH) Qgs Ig(REF) 0 Qgd Qgs2 VGS = 5V Qg(TOT) VGS VGS = 10V
+
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VDS
tON td(ON) RL VDS 90% tr
tOFF td(OFF) tf 90%
VGS
+
VDD DUT 0
10%
10%
RGS VGS VGS 0 10% 50% PULSE WIDTH
90% 50%
Figure 19. Switching Time Test Circuit
Figure 20. Switching Time Waveforms
(c)2008 Fairchild Semiconductor Corporation
FDP8870 Rev. A3
FDP8870
PSPICE Electrical Model
.SUBCKT FDP8870 2 1 3 ; rev December 2003 Ca 12 8 4.5e-9 Cb 15 14 4.5e-9 Cin 6 8 4.7e-9
10 LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 MWEAK MMED MSTRO CIN LSOURCE 8 RSOURCE RLSOURCE S1A 12 S1B CA 13 + EGS 6 8 EDS 13 8 S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT VBAT + 22 15 17 RBREAK 18 RVTEMP 19 7 SOURCE 3 DRAIN 2 RSLC1 51 ESLC 50 RDRAIN EVTHRES + 19 8 6 21 16
RSLC2
ESG + LGATE GATE 1 RLGATE EVTEMP RGATE + 18 22 9 20 6 8
It 8 17 1 Lgate 1 9 3.6e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 3.3e-9 RLgate 1 9 36 RLdrain 2 5 10 RLsource 3 7 33 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD
Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 2.15e-3 Rgate 9 20 2.1 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 9e-4 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))} .MODEL DbodyMOD D (IS=7.5E-12 IKF=17 N=1.01 RS=2.1e-3 TRS1=2e-3 TRS2=2e-7 + CJO=1.9e-9 M=0.57 TT=9e-11 XTI=2.6) .MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=1.75e-9 IS=1e-30 N=10 M=0.4) .MODEL MmedMOD NMOS (VTO=2.1 KP=30 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.1 T_ABS=25) .MODEL MstroMOD NMOS (VTO=2.51 KP=650 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25) .MODEL MweakMOD NMOS (VTO=1.67 KP=0.1 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=21 RS=0.1 T_ABS=25) .MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-9e-7) .MODEL RdrainMOD RES (TC1=2.3e-3 TC2=5e-6) .MODEL RSLCMOD RES (TC1=1e-4 TC2=1e-6) .MODEL RsourceMOD RES (TC1=8e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-2.3e-3 TC2=-9e-6) .MODEL RvtempMOD RES (TC1=-3e-3 TC2=2e-7) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-2) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-4) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1 VOFF=-0.5) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-1) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
(c)2008 Fairchild Semiconductor Corporation
-
Ebreak 11 7 17 18 33.45 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1
5 51
+
Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD
DBODY
FDP8870 Rev. A3
FDP8870
SABER Electrical Model
rev December 2003 template FDP8870 n2,n1,n3 =m_temp electrical n2,n1,n3 number m_temp=25 { var i iscl dp..model dbodymod = (isl=7.5e-12,ikf=17,nl=1.01,rs=2.1e-3,trs1=2e-3,trs2=2e-7,cjo=1.9e-9,m=0.57,tt=9e-11,xti=2.6) dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=1.75e-9,isl=10e-30,nl=10,m=0.4) m..model mmedmod = (type=_n,vto=2.1,kp=30,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.51,kp=650,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.67,kp=0.1,is=1e-30, tox=1,rs=0.1) LDRAIN sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-2) DPLCAP 5 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2,voff=-4) 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1,voff=-0.5) RLDRAIN RSLC1 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-1) 51 c.ca n12 n8 = 4.5e-9 RSLC2 c.cb n15 n14 = 4.5e-9 ISCL c.cin n6 n8 = 4.7e-9 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 33.45 GATE spe.eds n14 n8 n5 n8 = 1 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 i.it n8 n17 = 1 l.lgate n1 n9 = 3.6e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 3.3e-9
CA 12 S1B 13 + EGS 6 8 EDS LGATE ESG + EVTEMP RGATE + 18 22 9 20 6 MSTRO CIN 8 6 8 EVTHRES + 19 8 50 RDRAIN 21 16 MWEAK MMED EBREAK + 17 18 DBREAK 11 DBODY
DRAIN 2
RLGATE
LSOURCE 7 RLSOURCE
SOURCE 3
RSOURCE S1A 13 8 S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT VBAT + 22 15 17 RBREAK 18 RVTEMP 19
res.rlgate n1 n9 = 36 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 33
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-9e-7 res.rdrain n50 n16 = 2.15e-3, tc1=2.3e-3,tc2=5e-6 res.rgate n9 n20 = 2.1 res.rslc1 n5 n51 = 1e-6, tc1=1e-4,tc2=1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 9e-4, tc1=8e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-2.3e-3,tc2=-9e-6 res.rvtemp n18 n19 = 1, tc1=-3e-3,tc2=2e-7 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10)) } }
(c)2008 Fairchild Semiconductor Corporation
FDP8870 Rev. A3
FDP8870
PSPICE Thermal Model
REV 23 December 2003 FDP8870T CTHERM1 TH 6 1e-3 CTHERM2 6 5 2e-3 CTHERM3 5 4 3e-3 CTHERM4 4 3 9e-3 CTHERM5 3 2 1e-2 CTHERM6 2 TL 2e-2 RTHERM1 TH 6 3e-2 RTHERM2 6 5 8e-2 RTHERM3 5 4 1.1e-1 RTHERM4 4 3 1.6e-1 RTHERM5 3 2 1.72e-1 RTHERM6 2 TL 2e-1
th
JUNCTION
RTHERM1
CTHERM1
6
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model FDP8870T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =1e-3 ctherm.ctherm2 6 5 =2e-3 ctherm.ctherm3 5 4 =3e-3 ctherm.ctherm4 4 3 =9e-3 ctherm.ctherm5 3 2 =1e-2 ctherm.ctherm6 2 tl =2e-2 rtherm.rtherm1 th 6 =3e-2 rtherm.rtherm2 6 5 =8e-2 rtherm.rtherm3 5 4 =1.1e-1 rtherm.rtherm4 4 3 =1.6e-1 rtherm.rtherm5 3 2 =1.72e-1 rtherm.rtherm6 2 tl =2e-1 }
RTHERM3 CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
(c)2008 Fairchild Semiconductor Corporation
FDP8870 Rev. A3
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks. ACEx(R) Build it NowTM CorePLUSTM CorePOWERTM CROSSVOLTTM CTLTM Current Transfer LogicTM EcoSPARK(R) EfficentMaxTM EZSWITCHTM *
TM
(R)
Fairchild(R) Fairchild Semiconductor(R) FACT Quiet SeriesTM FACT(R) FAST(R) FastvCoreTM FlashWriter(R) *
FPSTM F-PFSTM FRFET(R) Global Power ResourceSM Green FPSTM Green FPSTM e-SeriesTM GTOTM IntelliMAXTM ISOPLANARTM MegaBuckTM MICROCOUPLERTM MicroFETTM MicroPakTM MillerDriveTM MotionMaxTM Motion-SPMTM OPTOLOGIC(R) OPTOPLANAR(R)
(R)
tm
PDP-SPMTM Power-SPMTM PowerTrench(R) Programmable Active DroopTM QFET(R) QSTM Quiet SeriesTM RapidConfigureTM Saving our world 1mW at a timeTM SmartMaxTM SMART STARTTM SPM(R) STEALTHTM SuperFETTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SuperMOSTM (R)
The Power Franchise(R)
tm
TinyBoostTM TinyBuckTM TinyLogic(R) TINYOPTOTM TinyPowerTM TinyPWMTM TinyWireTM SerDesTM UHC(R) Ultra FRFETTM UniFETTM VCXTM VisualMaxTM
* EZSWITCHTM and FlashWriter(R) are trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
Rev. I34
Preliminary
First Production
No Identification Needed Obsolete
Full Production Not In Production
@2008 Fairchild Semiconductor Corporation
FDP8870 Rev. A3


▲Up To Search▲   

 
Price & Availability of FDP887008

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X